Tetrahedron Letters No. 11, pp. 721-725, 1963. Pergamon Press Ltd. Printed in Great Britian.

THE THERMAL REARRANGEMENT OF BIS-(1-PHENYL-3,5-DI-TERT-BUTYL-2, 5-CYCLOHEXADIEN-4-ONE) PEROXIDE EVIDENCE FOR HOMOLYTIC CARBON-OXYGEN FISSION IN A SYMMETRICAL PEROXIDE Elmar R.Altwicker,Clinton D.Cook, Niles D. Gilmour, Bruce E.Norcross and Daniel Simpson Department of Chemistry, University of Vermont Burlington, Vermont

(Received 28 January 1963)

It has been shown¹that bis-(1-tert-alky1-3,5-di-tertbuty1-2, 5-cyclohexadien-4-one) peroxides decompose thermally by oxygen-oxygen fission. We wish to present first evidence for homolytic carbon-oxygen cleavage in the symmetrical peroxide, bis-(1-pheny1-3,5-di-tert-buty1-2,5-cyclohexadien-4-one) peroxide², (<u>1</u>). When <u>1</u> was decomposed neat at 150-160° or in solvents such as benzene or bromobenzene a red-purple color reminiscient of 2,6-di-tert-buty1-4phenyl phenoxy² (<u>2</u>) was produced transiently. These colored solutions showed visible absorption at 488 mµ identical to that of <u>2</u>, prepared by oxidation of 2,6-di-tert-

C. D. Cook, R. C. Woodworth and P. Fianu, J. Am. Chem.

Soc. <u>78</u>, 4159 (1956)
E. Müller, A. Schick and K. Scheffler, <u>Chem. Ber.</u> <u>92</u>, 474 (1959)

Thermal Rearrangement

buty1-4-phenyl phenol $(\underline{3})$; $\underline{3}$ was isolated from these reactions. Qualitative tests with acrylonitrile indicated that 1 and/or its decomposition products did not initiate the polymerization of acrylonitrile at 70^+3° , but did in fact inhibit the facile initiation of polymerization observed with bis-(1,3,5tri-tert-buty1-2,5-cyclohexadien-4-one) peroxide. When 1 was decomposed in vacuo just below its melting point, 2 distilled (red-purple color of distillate, λ max 488 m μ , subsequent isolation of 3). A white crystalline solid (5)was isolated in variable yield from the vacuum as well as the solvent decomposition reactions. Preliminary kinetic data were obtained from a study of the decomposition of 1 in bromobenzene at 70°, 80°, and 90° by following the change in intensity of the 488 m µ absorption. From these data the activation energy for the cleavage of one carbon -oxygen bond has been estimated as 30 Kcal/mole.

From the reaction of $\underline{1}$ in refluxing cyclohexene a white crystalline solid $(\underline{4})$, m. 164.0-5.2° (dec.) was isolated in 40% yield and $\underline{3}$ in 60% yield (these are minimum yields, based on the assumption that 1 mole $\underline{1}$ gives 1 mole $\underline{3}$; infrared data on the crude reaction mixture suggested that these yields may be 80-90%), after discharge of the redpurple color. The analytical and spectral data indicated that $\underline{4}$ resulted from the combination of a cyclohexenyl

(this is not to be interpreted as a mechanism for the formation of $\frac{1}{2}$)₁(Calcd. for C_{2GH34}O₃: C 79.14, H 8.68, O 12.18; found C 79.03, H 8.48, O 12.17); $\lambda \max 231 \text{ m}_{\mu}$ ((7.5×10^3) , 358 m μ ((-52); infrared bands at 3000, 2920, 1689, 1670, 1648, 1487, 1450, 1390, 1365, 1333; a series of sharp medium bands in the 1300-800 region; and strong bands at 762, 736, and 694cm.⁻¹. These data do not permit the assignment of an unambiguous structure to $\frac{1}{4}$. Compound 5 was not produced in this reaction, strongly suggesting that 5 (see below) is formed by a reaction path involving carbon-oxygen cleavage of $\frac{1}{2}$, and that cyclohexene is functioning as a peroxyradical trap.³

The neat decomposition of 1 at 150-160° for 3-5 min. proceeded with evolution of isobutylene and oxygen (identified by masspectroscopic analysis) and discharge of the redpurple color to give a yellow-orange glassy solid. Treatment with methanol or petroleum ether gave a small amount of 2 and 5, m. 187.3-8.8°, in 70% yield; its elemental analysis and molecular weight agreed with 1 (calcd. for $C_{40}H_{50}O_4$: C 80.75, H 8.49, O 10.76, M.W. 594.4; found C 80.66, H 8.62, O 10.91 M.W. 593.8); $\lambda \max 236 \ m \mu$ (f 2.1 x 10⁴), 276-8 m μ (f 6.8 x 10³)

³M. S. Kharasch and A. Fono, <u>J. Org. Chem.</u> <u>24</u>, 72 (1959).

(plateau), 34 lm ((219). The infrared spectrum showed absence of OH and sharp strong bands at 3000, 2925, 1730, 1668, 1650, 1500, 1478, 1395, 1367, 1336; a series of sharp medium bands in the 1300-800 region, and strong bands at 760, 740, and 692cm⁻¹. The NMR-Spectrum showed single peaks at 9.04, 8.93 and 8.83 T (tert-butyl groups), a doublet (J = 2 cps) at $6.29 \text{ T} (-0-\dot{c}-H)^4$, two unsymmetrical doublets (J = 2.5 cps) at 3.74 and $3.52 \text{ T} (\text{viny1-H})^4$, and a single peak (with minor splittings) at 2.71 T (aromatic H). Peak areas were in the ratios of 9:9:18:1:2:1:10. No exchange took place with D₂0. Based on these data and the degradation studies discussed below we propose for 5 the structure shown

Above its melting point \S decomposed slowly with gas evolution to give 76% \mathring{Z} (assuming 1 mole \S to give 1 mole \mathring{Z}) and a complex mixture of products. Reduction with excess KI/ acetic acid at reflux gave 95% \mathring{Z} and 67% 3-tert-buty1-5phenyl catechol, m. 98.2-9.2°, (identified by elemental analysis, infrared, ultraviolet, and oxidation with PbO₂ to 3-tert-

⁴ These peaks are in the region reported by D. S. Tarbell et.al., <u>J. Am. Chem. Soc.</u> <u>84</u>, 4115 (1962) for the 7-oxabicyclo-[2.2.1] heptene system.

butyl-5-phenyl-o-benzoquinone). Reduction with LiAlH₄ in refluxing tetrahydrofuran yielded better than 80% <u>></u> and a mixture of isomers in 90% yield. Infrared⁵ and ultraviolet⁶ data suggested that this mixture consisted of 1,5-di-tert-butyl-5, 6-dihydroxy-3-phenyl-7-oxabicyclo- {2,2,1} hept-2-enes.

The stereochemistry on carbon 5 in 5 has not been established. However, on the basis of a possible pathway⁷ for the formation of 5 we favor the arrangement shown. <u>Acknowledgment</u> The authors are grateful to the Petroleum Research Fund (Grant No. 1156-A4) for financial support.

⁵ Reference 4 and private communication from Professor Tarbell.

⁶ This isomeric mixture showed ultraviolet absorption at 257 mμ(log € 2.7) in agreement with that reported by H. Wynberg, J.Am. Chem. Soc. 80, 364 (1958), for 3-phenyl-2,5-dihydrofuran, and at 252 mμ.

⁷ Details on this as well as a detailed discussion of the structure of **5** will be published.